If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2-45x+486=0
a = -9; b = -45; c = +486;
Δ = b2-4ac
Δ = -452-4·(-9)·486
Δ = 19521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19521}=\sqrt{81*241}=\sqrt{81}*\sqrt{241}=9\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-9\sqrt{241}}{2*-9}=\frac{45-9\sqrt{241}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+9\sqrt{241}}{2*-9}=\frac{45+9\sqrt{241}}{-18} $
| 3-7x=3- | | -3(3x-1)=-29-x | | 6x+4-2x=12 | | 2(3x+10)=6x-2 | | 0.25x+0.50(1000-x)=0.45(1000) | | -77+8x=4x+2 | | 1.25x+7.4=10 | | 8-2x=3x+18 | | 2400=3/x | | -9t−10=-8t | | 17=4(p-5)+9 | | 3w(4w+1)=-16w-4 | | 10x-10=60=3x | | -2(4+9x)=3(-2-11x) | | 30-20u=u+21 | | -2(x-4)+3x=15 | | 3c^2+3c-5=0 | | 6/(x+2)=4/(x-4) | | 9+2p=3(p+4) | | 7/2(30/7x+15/7)=195/2 | | 7x-5x+8=12 | | 10x=70=3x | | 6=3+5x | | -6x+2=x-16 | | 3v=10+4v | | 7(x-7)+2=-47 | | (X-6)+x=90 | | 4t+2=16 | | 4b+2/3b+45+90+90=540 | | 8x+8(-5+6x)=21-5x | | -7x+3+8x=-18+14 | | 30000+2400x=36000+200x |